Raspberry Pi la mémoire de stockage

Il existe deux types de mémoire :

- la mémoire vive ou RAM, nécessaire à l'exécution des programmes (la capacité dépend du modèle) ;
- 256 Mo (modèle A , A+ et B rev1) 512 Mo (modèle B rev 2 et B+) 1 Go (modèle Pi 2 et Pi 3)
- l'espace disque, pour la mémoire de stockage des programmes et des fichiers

1 Mémoire vive disponible

pi@raspbe	erry ~ \$ <mark>f</mark> :	ree				
	total	used	free	shared	buffers	cached
Mem:	<mark>949408</mark>	494084	<mark>455324</mark>	0	60736	341816
-/+ buffe	ers/cache:	915	32 8	57876		
Swap:	102396		0 1	02396		
-						

Mémoire totale 949408 kB (modèle pi2)

2 la mémoire de stockage

la mémoire de stockage dépend du modèle c'est une carte SD ou une micro SD sur le modèle PI 2 de la classe 10

df (abréviation de *d*isk *t*ree) est une commande <u>UNIX</u> utilisée pour afficher la valeur d'espace disque disponible des systèmes de fichier dont l'utilisateur possède l'accès en lecture.

pi@philaure $^{\sim}$ \$	df -h				
Filesystem	Size	Used	Avail	Use%	Mounted on
rootfs	15G	2.7G	12G	20%	/
/dev/root	15G	2.7G	12G	20%	/
devtmpfs	460M	0	460M	0%	/dev
tmpfs	93M	260K	93M	1%	/run
tmpfs	5.OM	0	5.OM	0%	/run/lock
tmpfs	186M	0	186M	0%	/run/shm
/dev/mmcblk0p1	56M	19M	37M	34%	/boot

Les colonnes sont respectivement

- le système de fichiers,
- sa taille,
- la place utilisée,
- la place libre,
- la proportion d'espace utilisé,
- le point de montage.

3 Sauvegarder la carte SD

Un plantage ou une mauvaise manipulation peu rapidement subvenir. Pour créer une sauvegarde de notre carte SD, faire une image de celle-ci depuis **Win32DiskImager**. Téléchargeable à l'adresse

http://sourceforge.net/projects/win32diskimager/files/latest/download

Copy MD5 Hash: Progress	Win32 Disk Ima mage File	ager			 Device
Version: 0.9.5 Cancel Read Write Evi	Copy MD5 Has	h:			
Version, 0.5.5 Cancel Read Write Ext	Version: 0.9.5	Cancel	Read	Write	Exit

Donner un nom à l'image par exemple **image01.img** et pour terminer cliquer sur **Read**.

Si vous souhaitez par la suite, restaurer la carte SD de votre Raspberry-Pi, il vous suffit de sélectionner l'image et de cliquer sur **Write** pour appliquer l'image sauvegardé.